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Abstract. A term rewriting system is called complete if it is confluent and terminating. We prove
that completeness of TRSs is a “modular” property (meaning that it stays preserved under direct
sums), provided the constituent TRSs are left-linear. Here, the direct sum R, @ R, is the union
of TRSs Ry, R, with disjoint signature. The proof hinges crucially upon the (non)deterministic
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1. Introduction

An important concern in building algebraic specifications is their hierarchical
or modular structure. The same holds for term rewriting systems (see Huet &
Oppen [1980], Klop [1992], or Dershowitz and Jouannaud [1990]), which can be
viewed as implementations of equational algebraic specifications. Specifically,
it is of obvious interest to determine which properties of term rewriting systems
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(TRSs) have a “modular” character. We call a property modular if its validity
for a TRS, hierarchically composed of some smaller TRSs, can be inferred
from the validity of that property for the constituent TRSs. Naturally, the first
step in such an investigation considers the most basic properties of TRSs:
confluence, termination, unique normal form property, and similar fundamen-
tal properties as well as combinations thereof.

As to the modular structure of TRSs, it is again natural to consider as a start
the most simple way that TRSs can be combined to form a larger TRS: namely,
as a disjoint sum. This means that the alphabets of the TRSs to be combined
are disjoint, and that the rewrite rules of the sum TRS are the rules of the
summand TRSs together. (Without the disjointness requirement, the situation
is even more complicated—for some results in this direction, see Dershowitz
[1981], Toyama [1988], and Middeldorp and Toyama [1991].) A disjoint union of
two TRSs R, R, is called in our paper, a direct sum, notation R, & R;.

Another simplifying assumption that we will make is that R,, R, are
homogeneous TRSs, that is, their signature is one-sorted (as opposed to the
many-sorted or heterogeneous case; for results about direct sums of heteroge-
neous TRSs, see Ganzinger and Giegerich [1987)).

The first result in this setting is due to Toyama [1987a], where it is proved
that confluence is a modular property. That is, R, ® R, is confluent < R, and
R, are confluent. Here “= ” is trivial; “ <> is what we are interested in. (For
a simplified proof, see Klop et al. [1994].) To appreciate the nontriviality of this
fact, it may be contrasted with the fact that another fundamental property,

termination, is not modular, as the following simple counterexample in Toyama
[1987b] shows:

R, = {F(0,1,x) = F(x,x,x)}
R, = {G(x,y) = x,G(x,y) = y}.

It is trivial that R, and R, are terminating. However, R, ® R, is not terminat-
ing, because R, ® R, has the infinite reduction sequence:

- F(G(0,1),G(0,1),G(0,1)) = -~

However, this counterexample uses a non-confluent TRS R;. A more compli-
cated counterexample to the modularity of “termination,” involving only con-
fluent TRSs, was given by J. W. Klop and H. P. Barendregt (private communi-
cation) (for ground terms only). (For this counterexample as well as for some
improved versions, holding for open terms as well, and even using TRSs that
are “irreducible,” see Toyama [1987b].) Rephrased, this means that the impor-
tant property of “completeness” of TRSs (a TRS is complete if it is both
confluent and terminating) is not modular, that is, there are complete TRSs
R,, R, such that R; ® R, is not complete (in fact, not terminating; confluence
of R, ® R, is ensured by the theorem in Toyama [1987a]). This counterexam-
ple, however, uses non-left-linear TRSs.

The point of the present paper is that left-linearity is essential; if we restrict
ourselves to left-linear TRSs, then completeness is modular. Thus, we prove: If
R,, R, are left-linear (meaning that the rewrite rules have no repeated
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;f:frtlall}vr}::rllrtxy ttilsel; leit-hand sides), then R, ® R, is complete iff R, R, are. As
algebraic specificago?lzeggl {)hat_can et imenr TR i fomany “Juationz!
is worthwhile, e given by left-linear TRSs, we feel that this result
elgrr}:: ?rpof,hhowever, Is rather intricate and not easily digested. A crucial
) nt in the proof, and in general in the way that the summand TRSs
interact, is how terms may “collapse” to a subterm. The problem is that this
collapsmg _b'ehawor may exhibit a “nondeterministic” feature, which is caused
by ambiguities among the rewrite rules. We hope that the present paper is of
value not only because it establishes a result that in itself is simple enough, but
also because of the analysis necessary for the proof that gives a kind of
structure theory for disjoint combinations of TRSs and that may be of rele-
vance to other similar studies.

Regarqhng the question of modular properties in the present simple set-up,
we mention the results by Rusinowitch [1987] and Middeldorp [1989a]. These
papers, together, contain a complete analysis of the cases in which termination
er R, ® R, may be concluded from termination of R,, R,, depending on the
dlstrlputlon among R, R, of so-called collapsing and duplicating rules. Below,
we will compare these results with ours.

Another useful fact is established in Middeldorp [1989b], where it is proved
that the “unique normal form property” is a modular property. A survey of
modqlgrity results is in Middeldorp [1990]. For more modularity results, also
pertaining to a special form of termination called simple termination, we refer
to Kurihara and Kaji [1988/1990] and Kurihara and Ohuchi [1989 /1990].

From now on we assume that the two TRSs R, and R, are terminating
Without the assumption about the disjointness of R, and R;, Bachmair anc
Dershowitz [1986] have shown: If R, is left-linear, R, is right-linear, and there
is no overlap between left-hand sides of R, and right-hand sides of R, then
the combined system R, U R, is terminating.

If R, and R, are disjoint and R, is noncollapsing, then nonoverlapping
between left-hand sides of R, and right-hand sides of R, is trivial. Here, note
that the noncollapsing property of R, is necessary since a variable right-hand
side overlaps any left-hand side. Hence, from Bachmair and Dershowitz’s
theorem, it follows that if R, is left-linear, R, is right-linear and noncollapsing,
then the direct sum R, ® R, is terminating. However, using the disjointness of
R, and R, we can strengthen this result somewhat. Indeed, it holds that if R,
is right-linear and noncollapsing, then the direct sum R, & R, is terminating.
This is a special case of Middeldorp’s [1989a] theorem: If R, is noncollapsing
and nonduplicating, then the direct sum R, ® R, is terminating. Here, the
properties ‘“noncollapsing” and “nonduplicating” (with right-linearity as a
special case) of TRSs are seen to be basic criteria for termination.

The point of our result is that it shows that “left-linearity and confluence” is
also a basic criterion for termination of the direct sum R, & R,. Indeed, in the
present paper, we prove that, if R, and R, are left-linear and confluent, then
the direct sum R, ® R, is terminating. Rusinowitch [1987] has proved:

(A) If R, and R, are noncollapsing, then the direct sum R, ® R, is terminat-
ing. ' '

(B) If R, and R, are nonduplicating, then the direct sum R, ® R, is terminat-
ing.
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So, a natural question from the observations above is whether “noncollapsing”

(or “nonduplicating”) and “left-linear and confluent” are interchangeable as
follows:

(A') If R, is noncollapsing and R, is left-linear and confluent, then the direct
sum R, & R, is terminating.

(B") If R, is nonduplicating and R, is left-linear and confluent, then the
direct sum R, ® R, is terminating.

We can prove that Conjecture A’ holds; the proof is in Appendix B.
However, Conjecture B’ does not hold because of Toyama’s [1987a] counterex-
ample.

Finally, we mention why, in this paper, we cannot use the proof method
developed by Breazu-Tannen and Gallier [1989] and Okada [1989] in their
results about termination of the union of the (polymorphic) typed lambda
calculus (A) and a complete term rewriting system R. The reason is that their
proof method is essentially analogous to the one for Conjecture A’ (see
Appendix B)—but it does not work for our main result. Though, in their
framework, R is not required to be noncollapsing, R actually plays the role of a
noncollapsing system with respect to A. The key fact in their proof is that R
has base type but not higher type. Thus, if a mixed term M has a TRS context
as outermost layer, then any term reduced from M has a base type. In
particular, it will have no A symbol at the root after any reduction. Hence,
R-reductions cannot create a new SB-redex in a mixed term, just like noncollaps-
ing systems. It is clear that A is left-linear and confluent. Thus, by taking R
and A as R, and R, respectively, in Conjecture A’, we can observe very
similar proof diagrams when comparing their proof and our proof of Conjec-
ture A'.

We now give a brief outline of the contents of the paper. Section 2 fixes
some standard terminology and notation. Section 3 introduces an underlining
device, necessary to keep track of subterms in a reduction. Section 4 considers
“mixed terms,” that is, terms obtained from the disjoint union of two TRSs.
Several basic notions for mixed terms are introduced. The main lemma of this
section (4.8.5) has a complicated proof, that is postponed to Appendix A. In
Section 5, we prove the main result of this paper. In order not to interrupt the
flow of arguments, the long proof of one crucial proposition (5.2) is deferred to
Section 6.

1.1. PRELIMINARIES. We assume that the reader is familiar with the basic
concepts and notations concerning term rewriting systems (TRSs); otherwise,
see the basic references mentioned in the Introduction. In this section, we
exhibit the notions and concepts that are specific for the present paper, and we
briefly recapitulate some of the more basic concepts.

A term rewriting system R has an alphabet consisting of a (possibly infinite)

set & of function symbols F, G, H,..., each having an “arity,” that is, the
number of arguments that the function symbol requires, and a set of variables
X, ¥, z,....S0if Fis n-ary, then F(z,...,t,) is a term, for terms ¢,,...,1,.

Constants are 0-ary function symbols. The set of terms of R, notation Ter(R),
contains the terms which are inductively generated from the constant symbols,
the variables x, y, z,... and the other function symbols. Terms are denoted by
t, s,... but occasionally also by M, N,....
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A TRS R has a (possibly infinite) set Red(R) of reduction or rewrite rules r:
t > s,ort - s, where r is the name of the rewrite rule. We adopt the usual
restriction that the left-hand side ¢ is not a variable, and that the variables
occurring in s, also occur in ¢. A rewrite step has the form C[z7] —, C[s7],
where o is a substitution and C[ ] a context, that is, a term with a “hole” 0. A
substitution o is a homomorphism from Ter(R) to Ter(R), satisfying
F(ty,...,t,)7 =F(t7,...,t7). The transitive reflexive closure of —, is -»,;
the transitive closure of —, is — . The reflexive closure of —, is —7 .

,
The convertibility (i.e., equivalence relation) generated by —, is =, . Often
the subscript r is omitted. Convertibility (=) should not be confused with =,
which denotes syntactical equality. The notation ¢t »" s is short for t = - — s
in n steps.

We say that ¢ is a normal form if there is no s such that ¢ — s. Further, s
has a normal form ¢ if s - ¢ and ¢ is a normal form. The normal form of ¢ is
denoted by ¢ | if it exists uniquely.

The concepts of confluence (also called the Church—Rosser property) and
termination (also called the Strong Normalization property, stating that all
reduction sequences must end eventually) are defined as usual. We say that ¢ is
terminating if every reduction sequence starting with ¢ eventually must termi-
nate. A TRS is “complete” if its reduction relation is confluent and terminating
(this is also called canonical in the literature). A TRS R is left-linear if R
contains no rewrite rule ¢ — s such that ¢ contains two or more occurrences of
the same variable.

We write ¢t Cs to indicate that ¢ is a subterm of s. When referring to
subterms, we will always mean specific occurrences of those subterms; we will
however not need a more precise formalism to indicate occurrences (e.g., as
sequence numbers). If # Cs and ¢ # 5, we write ¢+ Cs, and call ¢ a proper
subterm of s.

2. Underlined Reduction and Frozen Subterms

Consider the TRS with set of reduction rules {F(x,C) - x, F(C,x) — x,
H(x) - x,G(x) — x} and the term M = F(H(C), G(C)). Figure 1(a) displays
the node-labeled tree corresponding to M. The term M has the following
reductions to its normal form:

(1) M — F(C,G(C)) » G(C) —» C
(2) M - F(H(C),C) - H(C) » C.

Although both reductions end in C, the two C’s are different with respect to
their occurrence in M. This is graphically expressed in Figure 1(b) where the
arrows indicate to which occurrence of C the term M is “collapsed.”

In the sequel, we will need to be precise about such reductions to occurrences
of subterms, rather than mere subterms. Therefore, we introduce the concepts
of “underlined” reductions and “frozen” subterms, as follows:

Definition 2.1

(i) Let R be some TRS. Then R, is the TRS having as alphabet (or
signature): the alphabet of R extended with a new unary function symbol
‘e.” The rewrite rules of R, are: those of R extended with e(x) — x.
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(i) We write —, for one e-reduction step, that is, a reduction step using the
rule e(x) — x. Thus: Cle(M)] -, C[M] for a context C[ ] and a term M
in R,.

(iii) For terms M,, M, of R,, we write M, —; M, (“f’ for “frozen”) if the
redex contracted is not an e-redex nor in the scope of some ‘e.” So if
Cle(P)] = N where S is the contracted redex, then it is not the case that
S ce(P).

Notation 2.2

(i) For notational ease we will henceforth write M instead of e(M) and R
instead of R,. Terms from R are “underlined” terms (even if they contain
no actual underlining).

(ii) We write —» for the transitive-reflexive closure of —-»; U —»_ . (This is, in
fact, an ambiguous use of —», since it was already in use for not
underlined terms. But the present extension of the old —-» to the case of
underlined terms will cause no confusion.)

(iii) In the sequel, C[P,,..., P,] denotes a term such that all underlinings are
displayed, that is, C[P,, ..., Pp] contains no underlined subterm.
Example 2.3

(i) Let R be the TRS as in the introduction of this section. Then, the R-term
F(H(C), G(C)) (in the e-notation: F(e(H(C)), G(e(C))) has the reduction:

F(H(C),G(C)) —, F(H(C),G(C)) ¢ F(C,G(C)) —
G({C) »; C~-,C.

(ii) Note that the terms F(H(C),G(C)) and F(H(C),G(C)) are normal
forms with respect to —; (f-normal forms).

PROPOSITION 2.4. Let R be a confluent and left-linear TRS. Then:

(i) the reduction — is confluent in R (See diagram in figure 2(a).)
(ii) the reductions —, and —; commute in R. (See diagram in figure 2(b).)

ProOOF. Before starting the proof, note that the shaded arrows have the
usual existential meaning. For example, the diagram in Figure 2(a) expresses:

VM, My, My AM(M, >, M, &M, »; M, = M, ». M, &M, »; M,).
(i) Consider in M, the maximal underlined subterms. Here “maximal” refers

to the subterm ordering C . Replace these subterms by mutually different
new variables, in order to “code” these subterms. Do this everywhere in
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FIGURE 2

the reductions M, »; M,, i = 2,3. The resulting reductions M; —-» M},
i = 2,3, are “ordinary” (not underlined) reductions in R. Take the com-
mon reduct M} according to R; and replace in M* -» M} (i = 2,3) the
coding variables by the original underlined subterms.

(i) It suffices to prove the statement for the case that M, », M, is one step
M, -, M,. Let this step be in fact M, = C[N] -, C[N]=M,. Then
M, = C'[N,..., N] where all descendants of N are displayed. Now take
M, = C'[N,...,N]. (Note that the reduction M, »; M, is possible by
left-linearity of R.) O

We will be especially interested in reductions of the form M = C[P] » P
where P is the only underlined subterm in C[P]. (Here, and in the sequel, we
will permit ourselves a slight abuse of notation by using “M = C[P] » P” for
“M = C[P] and C[P] » P.”) Graphically, the existence of such a reduction is
indicated by an arrow as in Figure 3 (cf. the arrows in Figure 1(b). Indeed the
two arrows there correspond with the —-reductions:

M =F(H(C),G(C)) =; F(C,G(C)) —; G(C) =, C
M = F(H(C),G(C)) =, F(H(C),C) —; H(C) —:C).

In the situation of Figure 3, we will sometimes say that (the displayed
occurrence of) P can be “pulled up from M.” We will also say that M
“collapses to (the displayed occurrence of) P”.

Remark 2.5. Since in C[P] » P the subterm P initially is “frozen,” it
might be thought that C[P] -» P implies C[z] - z for a fresh variable z. This
is not the case as the following example shows: Let R have the reduction rules

F(x) -» G(x,x)
G(C,x) »x
H(x) - x.

Then F(H(C)) » H(C) in view of the reduction sequence
F(H(C)) - G(H(C),H(C)) - G(H(C),H(C)) = G(C,H(C)) - H(C).

However, F(z) » z does not hold. The explanation is that in a reduction
C[P] —» P not all descendants of the initial P need to remain frozen; only the
P on the “main line” of descendants leading to the ultimate P in the
right-hand side of C[P] - P must be frozen. As the above reduction sequence



1282 Y. TOYAMA ET AL.
M

FIGURE 3

shows, some descendants of the initial P in C[P], not in the main line of
descendants, may actually play a necessary role in the collapse to the ultimate
P. (What does hold is the implication C[P]»; P = C[z] » z for a fresh
variable z. The next proposition (part (i)) generalizes this obvious fact.)

PROPOSITION 2.6. Let R be a confluent and left-linear TRS. Then:

@ C[P]—»; C’ [P Pl e
Clz] » C [ z] for a fresh variable z =
Clol » -0l f0r all Q.

(i) Let C[P] ~>f C [P,...,P] and P = C"[Q]l. Then CI[C"[Q]] »
c'ecrigl....cel -

Proor. Routine. O

PROPOSITION 2.7. Let R be a confluent and left-linear TRS. Let C[P,..., P]
-»* P (i.e., a reduction of k steps of —, or —). Then for some occurrence of P
in C[P ., Pl and some k' < k:

C[P,...,P,...,P] »*

ProOF. Consider a reduction C[P,..., P] »* P. Now the final P can be

traced back to a unique ancestor P in C[P,. P] Removing the underlining
of the other P in C[P,..., P] we obtain C[P ., Pl Clearly, there is
now a reduction C[P,..., f,..., Pl» P Wthh 1s the ‘same” as the original

reduction C[P,...,P,...,P] » P except that we possibly gain some e-steps

(removals of underlinings). O

LEMMA 2.8. Let R be a confluent and left-linear TRS. Let C[P] > P and
Q > P. Then C[Q] » Q.

PrROOF. Suppose C[P] »* P. We will prove the lemma by induction on k.
The case k = 0 is trivial. Now let

C[P] > C'[P,...,P] »* ' P.

By Proposition 2.7, we have for some occurrence of P in C'[P,...,P] and
some k' <k — 1:

C'lP,...,P,...,P] » P,
s.--» P1> Q. So we have
|>cfe..e...0]
]—»Q. O

By the induction hypothesis, C'[P,...,
C[_Q] —>C’[Q,...,Q,...,
—»C’[P,...,_Q,...,P

o o
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PROPOSITION 2.9. Let R be a confluent and left-linear TRS. Let C[P] » P
and let C[P] >, C'[P,..., Pl, where all occurrences of P in C'[P,..., P] are
displayed.

Then C'[P, ..., P] contains at least one occurrence of P and C'[P,...,P] » P
(see Figure 4).

PrOOF. That C'[P,..., P] contains some occurrence of P follows immedi-
ately from C'[P,..., P] > P, since underlinings cannot be created during a
reduction.

The proof of C'[P,..., P] » P follows from the diagram in Figure 5. Note
that the given reduction C[P] - P consists of some sequence of —-»; and -»,
reductions; it is displayed in the upper part of the diagram in Figure 5.

This diagram construction is possible by Proposition 2.4. Note that the
right-hand side of the diagram is the empty reduction P -, P (i.e., consisting
of zero steps), since P is an f-normal form. Hence, the lower side of the
reduction diagram gives us a reduction C'[P,...,P] » P. O

LeMMa 2.10. Let R be a confluent and left-linear TRS.
If C[P] » P and P -» Q, then C[Q] » Q.

PROOF. Suppose C[P] »* P. We will prove the proposition by induction on
k. The case k = 0 is trivial: then C[P]= P and indeed Q - Q. Induction
hypothesis: the statement holds for k — 1 (k > 0). Now let C[P] »*P. So
CIP] > C'[P,...,P] »*"'P. By Proposition 2.7, we have a reduction
C'[P,...,P,...,P] »¥P for some k' < k — 1 and for some occurrence of P.
Hence, by the induction hypothesis, C'[P,...,Q, ..., P]1 > Q.

By Proposition 2.9, since C'[P,...,0Q,..., P1>; C'[Q,...,0Q,...,Q], we
have C'[Q,...,0,...,0] » Q. Concatenating this reduction with C[Q] —
ClQ,...,0,...,01 » C'lQ,"..,0,...,0], we have indeed C[Q] » Q. O
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Remark 2.11. From the preceding propositions we see that the relation
C[P] » P is preserved under convertibility (=, the equivalence generated by
-, that is, by —,, —.). For, combining Lemma’s 2.8 and 2.10, we have:

ClPI>P & P=Q=C[Q] >0

Moreover, C[ P] - P is preserved under any reduction of C[P] which leaves P
unaffected, as Proposition 2.9 states (P may be multiplied, though.)

3. Mixed Terms

We will now consider disjoint unions, or as we will call them, direct sums
R, ® R,, of TRSs Ry, R,, with disjoint alphabets. Henceforth, we assume that
R,, R, are left-linear and complete. Let & be a set of function and constant
symbols, and let 2 be a countably infinite set of variables. Then Ter(#, 7°) is
the set of terms constructed from & and 7. If R, (i = b, w) are TRSs with rule
sets Red(R,), terms Ter(¥,, 7°) such that % and &, are disjoint, then Ry & R,,
is the TRS with terms Ter(#, U4, 7)) and reduction rules Red(R,) U
Red(R,). Instead of TelF, U Z,, 7°) we will also write Ter(R, ® R,,).

As a mnemonic device, we will call the function and constant symbols of Ry
black and those of R, white. To distinguish in print between them, the black
symbols are capitals and the white symbols are lower case. Thus, a term
M € Ter(R, ® R,), in its tree notation, is a constellation of black and white
“triangles,” as in Figure 6. Here, the root of M is the leading symbol of M.

Note that if R, and R,, are complete (as always assumed in this paper), then
every term in Ter(R, ® R,) has a normal form. This can be easily proved
using innermost reductions (in which the only redexes reduced are those
containing no proper subredexes). Moreover, the normal form is unique, since
R, ® R, is confluent (by the main theorem in Toyama [1987a]). The normal
form of term ¢ will be denoted by ¢ | .

Definition 3.1

(i) Let M =C[B,,...,B,]€ Ter(R, ® R,) and C[ ]# O. Then we write
M= C[B,,...,B,]if Cl,...,]is a context of R, and root(B,;) € &, for
i=1,...,n (Likewise with b, w interchanged.) The B; are called the
principal subterms of M.

(i) The set S(M) of special subterms (more precisely, subterm occurrences) is
inductively defined as follows:

{M} if M e Ter(R,)(d=Db,w)
SIM)=4(myu UsB) it M=C[B,,...,B](n>0),

iii) S,(M) ={NINeS(M) and root(N) € F}(d = b,w).
(iv) G,M)={NIM—>N and root(N) € F} (d = b,w).
Definition 3.2. Let M € Ter(R, ® R,,). Then:

if Me Ter(R,) (d =b,w)

rank(M) = max,{rank(Bi)} +1 if M= CI]:Bl""’Bn:[] (n>0)
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The following fact (where — is reduction in R, ® R,,) has a routine proof
that is omitted.

PropoSITION 3.3. If M — N, then rank(M) > rank(N).

ProroOSITION 3.4.  Let M - N where both M, N have a black root. Then there
exists a reduction M = My - M, - M, —» - = M, = N such that all M, (i =
0,...,n) have a black root.

PrROOF. Let M -»* N (k = 0). We will prove the proposition by induction
on k. The case k = 0 is trivial. Now let M — M’ -»*~1! N. If the root of M’ is
black, then we are through, by the induction hypothesis. If the root of M’ is
white, then there exists a context C[ ] with black root such that M = C[M']
and C[ ] — 0O, the trivial context. Thus, we have a reduction M = C[M'] »
C[N] = N in which all terms have a black root. O

LEMMA 3.5. Let M — N. Let Q be a special subterm of N with white (black)
root. Then there is a special subterm P of M with white (black) root such that
P=QorP - Q.

PROOF. Since M — N, there exists a rewriting rule Cyx,,...,x,] =
Clx;,..., x;,), a context C[ ], and mixed terms M,,..., M, such that M =
ClC[M,,...,M,]] and N =CI[C,[M,,..., M, ]] where M,,..., M, €
{M,,....,M,}.

Case 1. Q and C,[M;,..., M,,] are disjoint. O occurs in the context C[ ]
as a special subterm. Thus, we can take Q as P in M = C[C\|[M,,..., M,]].

Case 2. QcCIM,,...,M,,] As Q is a special and proper subterm
occurrence of C,[M,,..., M, ], Q must occur in some M. Since M;; €
{M,,..., M}, we can take Q as P in M as a special subterm.

Case 3. Q=Cl[M,,...,M, ) If C[M,,...,M,] has a white root, then
take C[M,,...,M,]in M as P. It is clear that P > Q and P is a special
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subterm with white root (see Figure 7(a)). If C[M,,..., M, ] has a black root
then C,[,...,]1= O and Q must be in {M,,..., M,}, say Q = M,. Thus, we can
take M, in M as a special subterm (see Figure 7(b)).

Case 4. CIM,,...,M,1c Q. Let Q=CJCIM,, ..., M,] where
C,l,...,]1 # O. Then there exists a context C,[ ] such that N = C,[Q] =
clclcIM,, ..., M0l and M= CJ[CIC[M,,...,M,]ll. Take P =
ClC[M,,...,M,]lin M. Then, P — Q and P is a special subterm with white
root of M (see Figure 7(c)). O

LEMMA 3.6. Let M have a black root (€ ¥,) and suppose M - N where N
has a white root. Then M has a special subterm P with white root such that
M = C[P] » Pand P » N. (See Figure 8.)

PROOF. Suppose M »* N. We will prove the proposition by induction on .
The case k = 1 is trivial; then N must be in fact one of the principal subterms
M, of M=C'[M,,...,M,,...,M,] and we can take P = M,.

Induction Hypothesis: Suppose the statement is proved for k£ — 1. Now
consider M »* N, that is, M - M’ -k~ N for some M'.
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Case 1. The root of M’ is white. Then M = C'[M,,... . M,,.... M, - M’
= M, for some r. Take P = M,.

Case 2. The root of M' is black. According to the induction hypothesis M’
has a special subterm P’ with white root such that M’ = C[P’'] » P’ and
P’ -» N. By Lemma 3.5, there is a special subterm P & S,(M) such that
P — P’ or P = P'. We distinguish two subcases:

Case 2.1. P — P'. Then M = C[P] - M' = C[P’']. By Lemma 2.8, M =
C[P] -» P. Since P —» P’ -» N the statement is proved for this case.

Case 22. P=P'. Then M = C'[P] » C*P,...,P,...,P] >,
C*P,...,P,...,Pl=M' =C[P]=C[P']»>P' =P. O

3.7. ESSENTIAL SUBTERMS. As the last lemma (3.6) states, if M has a black
root all reductions of M to a term with white root can be “factored through”
reductions of M to its special subterms with white root. Of these special
subterms with white root, some are even more special: the essential subterms of
M. As we will see, every collapse reduction of M to a special subterm Q with
white root can be factored as a collapse of M to an essential subterm P
followed by a collapse of P to Q. (See Figure 9.)

Definition 3.7.1. Let M have a black root. Let P be a special subterm of M
with white root such that M collapses to P. Then P is an essential subterm
(occurrence) of M if there is no special subterm P’ with white root such that
P # P’', M collapses to P’, and P’ collapses to P. The set of essential
subterms of M is E(M). (Likewise, with colors interchanged.)

In other words: Let root(M) € Z,. Then the essential subterms of M are the
maximal elements in the set {N € S, (M) | M collapses to N}, partially or-
dered by the relation “...collapses to...”.

LEMMA 3.7.2. Let M have a black root, and suppose M —» N where N has a
white root. Then for some essential subterm P of M: P > N.

PrOOF. Immediately by Lemma 3.6 and Definition 3.7.1. O
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3.8. DETERMINISTIC TERMS. In the preceding subsection, we have already
set up some notions to discuss the “collapsing behavior” of mixed terms. We
will now introduce an important property of this collapsing behavior—first for
the case of a single TRS.

Definition 3.8.1. Let R be a TRS and M & Ter(R). Then M is a nondeter-
ministic term if
(i) M = C[P,Q] and C[P, Q] » P,C[P, Q] » Q (Figure 10(a)), or
(i) M =C[P), P=C'[Q],CIP]» P, C[C'[Q]] » Q but not C'[Q] > Q
(Figure 10(b)); here P + Q denotes that P cannot collapse to Q).

An example of a nondeterministic term was given in the introduction of
Section 2, for nondeterminism of type (i). As an example of nondeterminism of
type (ii) consider R = {F(x) — G(x, x),G(D, x) = x, G(H(y), D) = y, H(D)
— D,C — D}. This TRS is left-linear and complete. Now take M = F(H(C));
then F(H(C)) » H(C), F(H(C)) - C, but not H(C) » C.

Remark 3.8.2. The phenomenon of nondeterministic terms is caused by
ambiguities between the rewrite rules (i.e., the presence of “critical pairs”).
Indeed, one can prove: In an orthogonal TRS (i.e., left-linear, non-ambiguous
TRS) all terms are deterministic. The proof is rather lengthy and, since we
have no need for this fact here, is not included in this paper.

Definition 3.8.3. Let Ry, R, be arbitrary TRSs and let M € Ter(R, & R,,).
Then M is a mixed nondeterministic term if M has at least two essential
subterm occurrences. (See Figure 11.)

Remark 3.8.4. There are R,, R, and terms M, M' with M — M’ such that
M’ is mixed nondeterministic, but M is not. Example: consider R, = {G(x) —
F(x, x), F(x,C) »x,F(C,x) »x}, R,={g(x) >x} and M= G(g(C)) —
F(g(C), g(C) =M".

Clearly, a mixed nondeterministic term is nondeterministic in the sense of
Definition 3.8.1. In the sequel, we will say that a term M has color change if
root(M) is black and root(M |) is white, or vice versa. The following lemma
plays an important role in Section 5.
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LEMMA 3.8.5. (MAIN LEMMA). Let R,, R,, be left-linear and complete. Let
M be terminating and let M have color change. Then M has exactly one essential
subterm.

PrROOF. See Appendix A. O

4. Termination for the Direct Sum

In this section, we will prove the main result, that is, the termination property
for the direct sum R, & R, of left-linear and complete R,, R,. To this end,
we define for a term M € Ter(R, ® R,) two terms: the black projection
M® € Ter(R,) of M, and the white projection M* & Ter(R,,) of M. Roughly,
the black /white projections of M contain precisely the “information™ in the
black, respectively white, part of M. In fact, we will prove that if M is a
supposed minimal (with respect to length) term with white root, admitting an
infinite reduction, then the white projection M" has already an infinite
reduction. As M¥ is in Ter(R,), this is in contradiction with the termination
property of R, and we will have proved termination for R, @ R,,.

VARIABLE CONVENTION 4.1. From now on we will assume that every term
M € Ter(R, ® R,) has only “x” as variable occurrences, unless other variables
are explicitly displayed. Since R, ® R,, is left-linear, this variable convention
may be assumed in the sequel without loss of generality.
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While the definition and properties of the white projection M™ (the black
projection M®) of M will be given and proved in Section 5, it is sufficient for
the rest of this section to assume the properties as stated in the following
proposition.

PROPOSITION 4.2. Let every maximal special subterm with black (white) root
of M € Ter(R, ® R,) be terminating (if it exists). Then the white projection M"*
(the black projection M®) of M has the properties (where the black projection M”
has the properties obtained by interchanging w, b and white and black.):

(1) If M = x, then M¥ = x.

(i) FM=f(M,...,M)n > 0) has a white root, then M* = f(MY, ..., M}).
(iii) If M has a black root and an essential subterm N, then M" —» N".
(iv) If M - x, then M"” - x.

PrOOF. See the next section. O

Remark 4.3. Let M =C[M,,...,M,] where C[,...,] is a context in
Ter(R,,). Then, from Proposition 4.2(i) and (ii), we have M* = C[M},..., M*].
From this it follows that M* = M if M € Ter(R,,).

Remark 4.4. 1t is clear that the assumption “Every maximal special subterm
with black root of M € Ter(R, ® R,) is terminating (if it exists)” means that (i)
if M has a white root, every principal subterm (if it exists) is terminating and
(i) if M has a black root, M itself is terminating.

Remark 4.5. Let every maximal special subterm with black root of M €
Ter(R, ® R,,) be terminating, and let M — N. Then, it is trivial that every
maximal special subterm with black root of N is also terminating. Thus, if M
has the white (black) projection by Proposition 4.2, then so has N.

Notation 4.6

() We write M =, N when M, N have the same outermost-layer context,
that is, M = C[M,,...,M, T and N = C[[N,,..., N, 1 for some M,, N,
(i=1,...,m.

(ii) Let M = C[M,,..., M, ] and suppose M =% N (i.e., N is obtained from
M by contracting the redex occurrence R). If the redex occurrence R
occurs in some M, we write M —, N (“inner reduction”); otherwise, we
write M —_ N (“outer reduction”).

Note that M, », M,, M, -», M, implies M, », M,.

PRrRoPOSITION 4.7. Let M —, N where M, N have white roots. Suppose
M =, A and A »; M (internal reduction), where every maximal special subterm
with black root of A is terminating. Then there exists a term B such that N =, B,
A —, B, B>, Nand A” — B”. (See diagram in Figure 12.)

Proor. Let A4 =C[A4,,...,A4,], M=C[M,...,M, ] and N =
C'IM,,...,M, TG, €{1,...,m}). Take B=C'[4,,..., A;,]. Then 4 —»_ B
and B -», N. From A" = C[AY,..., A%] and BY = C'[AY,..., A%], it fol-
lows that AY - B". O

PROPOSITION 4.8. Let M - N where root(N) is white and every maximal
special subterm with black root of M is terminating. Then there exists a term A such
that N=, A, A », N, M » A, and M* - A*. (See diagram in Figure 13.)
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PROOF. We will prove the proposition by induction on rank(M).
Basis: rank(M) = 1. This case is trivial: Take 4 = N.

Induction hypothesis: The proposition holds for M with rank(M) < k. Now
let M have rank k.

CLAIM. The proposition holds if M —»; N.

PROOF OF THE CramM. Let M = C[M,,...,M, 1>, N=C[N,,...,N,]
where M; » N, for i = 1,..., m. Without loss of generality we may assume
that N, =x,...,N,_, =x, root(N) is white for p </ <g, and root(N,) is
black for q s ] < m. Thus,

NEC[x,...,x,Np,...,Nq_l,Nq,...,Nm].

By the induction hypothesis, for every M; (p <i < g) there is a term A, such
that we have the diagram in figure 14.

Now take A = Clx,. Aq My, .M, Clearly, M > A.
Since 4, =, N, (p<i< q) and ﬁoth , N (q <] < m) have black root, we
have A4 = N Furthermore, 4 »;, N smce A;»;, N, (p<i<gq) and by
Proposmon 3.4 the reductions M; » N, (¢ < < m) can be taken such that
every term in them has a black root. Now

MY =C[MY,... My My MY MY M
AWEC[x,...,x,Ap,.. o I,MW My,

(for A%, see Remark 4.3). By Proposition 4.2(iv) we have MY » x (1 <i <p),
since M, » x. We had already M¥ - A4}(p <i < q). Hence, M™ » A". (See
figure 15.) (End of the Claim) O
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Now we will prove the full proposition (without the additional assumption
M —»; N as in the Claim) for rank(M) = k. We distinguish two cases.

Case 1. The root of M is white.

So M, N have both white roots. Hence, there is, by Proposition 3.4, a
reduction M - N in which every term has white root. This reduction can be
split into

M—> -, > -, > N

Now we can construct the diagram as in Figure 16.
Here subdiagrams « are justified by the Claim, subdiagrams 8 by Proposi-
tion 4.7 and subdiagrams vy follow by transitivity of -, .



Direct Sums of Left-Linear Complete Term Rewriting Systems 1293

O -0 O L 2 -0~ -0

FIGURE 16

Case 2. The root of M is black.

By Lemma 3.7.2, there is an essential subterm Q of M such that M » Q —»
N. By Proposition 4.2(iii)), M¥ -» Q. Obviously, rank(Q) < rank(M) = k.
Hence, we can construct the diagram in Figure 17, where the triangular
subdiagram is obtained by the induction hypothesis applied on Q. O

We are now able to state and prove the main result of our paper:

THEOREM 4.9. Let R,, R, be left-linear and complete. Then R, ® R, is a
terminating TRS.

PROOF. Let M € Ter(R, ® R,,). We will prove by induction on rank(M)
that M does not have an infinite reduction.

Without loss of generality, we may assume that M has a white root. The case
rank(M) = 1 is trivial, by assumption. Induction hypothesis: If rank(M) < &,
M cannot have an infinite reduction. Now suppose for a proof by contradiction
that there is a term M with rank(M) = k having an infinite reduction
M=M,— M, > M, - ---. Now rank(M,) > rank(M,) > ---; by the induc-
tion hypothesis it follows that rank(M,) = rank(M,) = ---. Hence, the roots of
all M, are white. Note that every principal subterm of M, is terminating.

Now infinitely many steps M; — M,,, must be in fact M; -, M, ,; other-

13

wise, we would have an infinite internal reduction
M, = CkI]:Mk,l""’Mk,r:D—)i S

which would yield an infinite reduction of some M, 0 in contradiction with the
induction hypothesis.

So, we can apply the following diagram construction (Figure 18), using
Propositions 4.7 and 4.8 in the same way as for Figure 16. But this means that
MY has already an infinite reduction, in contradiction with the termination
property of R,,. O

COROLLARY 4.10. Let R,, R, be left-linear. Then:

R, ® R, is complete < R, and R, are complete.

b

ProoOF
(=) is trivial.

(<) follows from Theorem 4.9 and the theorem in Toyama [1987a] stating that
for all TRSs, R, ® R,, is confluent iff R,, R, are confluent. O
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5. Projection of mixed terms

In this section, we will prove Proposition 4.2 for the direct sum R, ® R,, of
left-linear and complete R,, R,, that is, the existence of the white (black)
projection. To this end, we first define the white (black) projection and next
prove that the defined projection satisfies the properties ()—(iv) in Proposition
4.2.

The definition of the projections is rather subtle and rests heavily upon the
Main Lemma 3.8.5. We will prepare the way by an example. Suppose M is
structured as in Figure 19(a); a concrete example is: M = F(g(C), h(C)) as in
Figure 19(b) where R, ={F(x,C) »x, F(C,x) »x} and R, = {g(x) —
x, h(x) = x}. So P, = g(C), P, = h(C) are the essential subterms of M. Now
suppose we wish to determine the white projection M*. As M can collapse to
P, as well as to P,, the projection M™ should convey the information in both
P,, P,. The problem is that these subterms are disjoint (in this case). Yet, there
is a way to combine them into one term: namely by piling them with result as
in Figure 19(c), respectively 19(d). Throughout this section, the variable x will
play a special role.

Of course, we were lucky in this example, since the white top triangles of P,,
P, which we wanted to pile, were indeed “pileable.” In the situation of Figure
20, where P, is supposed to be again nondeterministic, the piling would not
have succeeded, because triangles 1, 2 can be taken such that they cannot be
piled. However, our Main Lemma 3.8.5 says that such a situation does not exist
and, therefore, piling succeeds as will be proved in more detail below.
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Definition 5.1.  Let R be a confluent and left-linear TRS. Let P, ..., P, be
a sequence of terms of R (p > 2). Then, the term pile(P,, ..., P,) is defined as
follows:

Case 1. P, »x for i =1,...,p. So P, = C[x] such that C[x] » x (there
may be other occurrences of not underlined x’s in C|[x]).
Then pile(P,, ..., P,) = C|[C,[ -+ C,_,[C,[x]]-- 1]

Case 2. Not case 1: Then pile(P,,..., Pp) is undefined.

Example 5.1.1. Note that pile(P,,..., P,) does not merely depend on
P,...,P, but also on R. If R = {F(x,y) - x,1(x) > x} and P, = F(x, x),
P, = I(x), then pile(P,, P,) = F(I(x), x). If in R the first rule is replaced by
F(x,y) =y, then pile(P,, P,) = F(x, I(x)).

Remark 5.1.2. The condition in Definition 5.1, that R is confluent and
left-linear, is necessary to ensure that pile is a (partial) function. Otherwise,
taking R = {F(x,y) = x, F(x,y) =y, (x) = x} and P, = F(x,x), P, = I(x),
we would have (see the previous example) pile(P,, P,) = F(x, I(x)) as well as
F(I(x), x). That confluence and left-linearity of R is sufficient to make pile
into a function, is easily seen as follows. Now assume that C[x, x] -» x as well
as C[x, x] - x. Then this implies (by left-linearity) that C[x, y] -» x as well as
v, contradicting confluence.

In the sequel, we will use pile for terms of R, & R, where R,, R, are
complete and left-linear. Indeed, the direct sum is then confluent (and,
trivially, left-linear), as guaranteed by the theorem in Toyama [1987] stating
that the direct sum of confluent TRSs is again confluent. Thus, the operation
pile is well defined.
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Definition 5.2. Let every maximal special subterm with black (white) root of
M € Ter(R, @ R,) be terminating (if it exists). Then, the white projection M¥
of M is inductively defined as follows:

(1) If M =x, then MY =x.
2 M =f(M,,...,M,) (n > 0) has a white root. Then, M* = f(M",..., MY).
(3) M has a black root:
(3.1) M has no essential subterm. Then, MY = x.
(3.2) M has precisely one essential subterm P. Then, MY = P™.
(3.3) M is mixed nondeterministic, with sequence of essential subterms
Py,..., P, Then, M¥ = pile(PY, ..., Ppw).

(The black projection M" is defined by interchanging b, w and black, white.)
In case (3.3), the essential subterm occurrences Pi,..., P, may be ordered by
precedence of their head symbol. (The precise ordering is irrelevant.) Note that
M™ may be undefined, due to the possible undefinedness of pile(P, ..., P)).
Lemma 5.7 will however show that in the present situation, where R,, R, are
left-linear and complete, if every maximal special subterm with black (white)
root of M is terminating then M™ (M) is well defined. Note that (3.2) is not a
special case of (3.3) since in general pile(N) # N, even if the definition of
pile(P,,..., P,) (p > 2) is extended to that of pile(P,,..., P,) (p > 1). (In fact:
pile(N) = N « pile(N) is defined & N - x.) Finally, note that in (3.2), (3.3)
we have rank(P) < rank(M) and ran(P,) < rank(M), respectively.

Example 5.3. (See Figure 21.)
Example 5.4. (See Figure 22.)

Example 5.5. Consider the TRSs R, = {F(C(y), x) - x, F(x,C(y)) =
x,C(y) = D}, R, = {g(x) = x, h(x) - x} with R, containing also a constant
‘a’. Then

(F(g(C(2)), h(C(a))))" = pile((g(C(a))", (R(C(a)N")

= pile(g((C(a))™), H((C(a))™))
= pile(g(x), h(x)) = g(h(x)).

Example 5.6. The black projection of the following term (in Figure 23) is
undefined; however, by the Main Lemma (3.8.5) such terms cannot exist (when
Ry, R, are left-linear and complete and every maximal special subterm with
white root of M is terminating).
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In many cases, the result of projecting M to M® or M¥ will be a term
collapsing to the special variable x (i.e. M® - x; respectivey, M* - x.) See for
example, Example 5.6. We will now prove simultaneously this fact and the
well-definedness of M¥ (M") when every maximal special subterm with black
(white) root of M is terminating.

LEMMA 5.7. Let every maximal special subterm with black (white) root of
M € Ter(R, ® R,) be terminating (if it exists). Then the white projection M"
(the black projection M") of M is well defined and M —» x = root(M |) & &,
(respectively, M® » x < root(M |) & F,).

PrOOF. We will prove a slightly stronger statement, namely (i) and (ii):

(1) If root(M |) & Z,, then MY is well-defined and MY - x,
(i) If root(M |) e &, and M| = C*[M,,..., M, ]| (m > 0), then M™ is
well-defined and M™ | = C*[x,..., x]. (Hence: Not M¥ - x.)

We will prove (i) and (ii) by induction on rank(M).
Basis. rank(M) = 1.

Case 1. M € Ter(R,). Then M™ = M, by (1) or (2) of Definition 5.2. If
M | =x,then MY =M - x, so (i) Lolds; (ii) holds vacuously. If root(M |) €
., then (i) holds vacuously; (ii) holds since MY | = M |.

Case 2. M € Ter(R,). We may suppose M # x, since the case M = x was
covered in case 1. By (3.1) of Definition 5.2, M¥ = x. So (i) holds. Statement
(i) holds vacuously.

Induction hypothesis. Assume (i) and (ii) hold for rank(M) < k (k > 2).
Now consider M with rank(M) =

Case 1. rooM) e, Let M=C[M,....M,I(m=>1), so M¥ =
CIMy, ..., My]. Without loss of generality, we may assume that root(M, |) &
&, for 1 < i <p and root(M;|) € Z, for p <j <m. So, by the induction
hypothesw every M" is well- defmed M,W ~» x (1 <i <p), and writing M, |
= Cr[IN, - ]n,]](n 20,p<j<m): M| =Clx,...,x]. Thus

Ml=CIM,|,...,M, ]|
=C[M 4, ..;M,_ },CEIN, 1,.... N, Do, CEIN,, oo, Ny D] L
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and
MY =CIMY),....My ]l
-=—C[x,...,x,C;"[x,.‘.,x],...,C,’f,[x,...,x]]i.
Note that M;!,...,M,_,|,N, ..., N, ,, are normal forms having roots

not in .Z,. Therefore, if root(M |) & &,, then
C[x,...,x,C;"[x,...,x],...,C,",‘l[x,...,x]]l =x

and if root(M |) € &,, then we have a context C*[,...,] =
C[,...,C;‘,‘[,...,],...,C,’f,[,...,]]¢ such that M | = C*[N,,..., N,] where N,
e (M, J,,...,Mp_li,Np,l,...,Nm’nm} and MY | = C*x,...,x] #x (using
Ny = == =N}, =x by (3.1) of Definition 5.2).

Case 2. root(M) & &,. Distinguish the subcases:

Case 2.1. M has no essential subterm. Then, MY = x, either by (1) of
Definition 5.2 or (3.1). Hence, M¥ | = x, and (i) and (ii) hold.

Case 2.2. M has precisely one essential subterm P. Then M™ = P". Note
that rank(P) < k. Thus, by the induction hypothesis every P is well defined.
Since M| =P | and MY | = P¥ |, the claim follows by using the induction
hypothesis.

Case 2.3. M has essential subterms P,,..., P, (p > 1). Note that rank(P,)
< k for all i. By the Main Lemma 3.8.5, root(M |) &€ ,. Since M| =P, |,
also root(P, | ) & &, for all i. So, by the induction hypothesis, P* —» x for all i.
Now M™ = pile(Py,..., P)’) and since P" »x (i =1,..., p), M" is defined.
Obviously, M"Y = pile(P},..., PPW) -» x. Hence, (i) is true and (ii) holds vacu-
ously. O

PROPOSITION 5.8. Let M have a black root and let M be terminating. Suppose
P is an essential subterm of M. Then M" -» P*.

PrOOF. See Definition 5.2 of M™. The only possible cases are (3.2) and
(3.3). In case (3.2), MY = P¥. In case (3.3), MY = pile(P},..., PPW) where
P = P, for some k € {1,..., p}. From Main Lemma 3.8.5, M cannot have color
change, that is, root(M |) is black or M | =x.ByM | =P | = - =P |
and Lemma 5.7, P¥ » x (i = 1,..., p). Thus, we can write that P = C[x]
such that C|[z] - z. Hence, by definition of “pile”:

MY =[Gl ],
which yields MY » C,[x]=P}. O

PROPOSITION 5.9 (PROPOSITION 4.2). Let every maximal special subterm with
black (white) root of M € Ter(R, ® R,,)) be terminating (if it exists). Then the
white projection M* (the back projection M) of M has the properties (where the
black projection M® has the properties obtained by interchanging w, b and white
and black.):

() If M = x then M” = x.

(i) IfM =f(M,,..., M,)(n = 0) has a white root, then M* = f(M}", ..., M’).
(iii) If M has a black root and an essential subterm N, then M” - N".
(iv) If M > x then M” - x.
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Proor. The proposition follows from Definition 5.2, Lemma 5.7, and
Proposition 5.8. O

Appendix A
In this appendix, we prove Lemma 3.8.5 (Main Lemma) in Section 3:

LeEmMA 3.8.5. MAIN LEMMA. Let Ry, R, be left-linear and complete. Let M
be terminating and let M have color change. Then M has exactly one essential
subterm.

ProoOF. First, we note that from color change of M and Lemma 3.6, M
must have at least one essential subterm. Let P(M) be a predicate that if M is
terminating and has color change then M has exactly one essential subterm.
We prove VM P(M) by noetherian induction (see Huet [1980]), showing the
claim:

VM[VN[M - N = P(N)] = P(M)].

For a proof of this claim by contradiction, suppose that there exists a
terminating term M such that M has color change but more than one essential
subterm and every N obtained from M with one step reduction (i.e., M — N)
satisfies P(N). Without loss of generality, we may suppose that M has a black
root.

Let N be a term obtained from M with one step reduction. If N has a white
root, then we can write M = C[M,,...,M,,N,M,.,...,M, - N. From
Proposition 2.9, N must contain all the essential subterms of M. In particular,
N must contain an essential subterm P of M as a proper subterm, since M has
more than one essential subterm. But this contradicts the fact that N is also an
essential subterm of M. Thus, N must have a black root. From M | =N |, N
has color change. N is clearly terminating. Hence, N must have exactly one
essential subterm since P(N) holds.

Let P and Q be two essential subterms of M. Let M, (MQ, respectively) be
the minimal special subterm occurrence with black root that contains P (Q
respectively). We have to show that all the possible positions of M, and M,, in
M contradict the uniqueness of the essential subterm of N.

Case 1. M, and M,, coincide.

Let M = C[M,(= C[M,]. Since M, is not only the minimal special
subterm occurrence with black root containing P but also that containing Q, P
and Q must occur independently in M. Thus, we can write M, = C,[P, Q].

If C[z]is not in normal form, we have a reduction C[z] - C'[z,..., z]. By
Proposition 2.9, C'[z,..., z] must contain at least one occurrence of z. Thus,
N = C'[M,,..., Mp] keeps two essential subterms P and Q; this contradicts
the fact that N must have exactly one essential subterm. Hence, C[z] must be
a normal form.

Assume that Cp[z, z'] is a normal form. Then C[C,[P |,Q |]] is a normal
form since C[Cplz,z']] is a normal form and P | and Q | have white roots.
However, this contradicts color change of M. Thus, Cp[z, z'] must be not in
normal form. We can write Cplz, z'] = Cjlz,...,2,z’,..., z']. By Proposition
2.9, CI’,[z, ..., 2,z',...,2'] must contain the occurrences of z and z’. Thus, we
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have N = C[C',[P,...,P,Q,...,Q]] in which P and Q are two essential
subterms of N: contradiction. Thus, Case 1 is impossible.

Case 2. M, € M, (or Mp C M).
Case 2.1. M, ¢ P.

Let M = C[Mp], M, = Cp[ P, Mp]and M, = C,[Q]. From a similar reason
as for Case 1, it follows that C[z] and Cp[z, z'] must be normal forms. If Cp[z]
is a normal form, then C[C,[P 1,ColQ L1l] must be a normal form of M:
contradiction to color change of M. Thus, C,[z] is not a normal form. Let
Cplz] - Colz, ..., z]. By Proposition 2.9, Cplz,..., z] contains at least one
occurrence of z. If Cylz,..., 2] # z, then we have M = C[C,[ P, CQ[Q]]] -
CIC,[ P, ColQ,...,Qll where N has two essential subterms P and Q: contra-
diction. Thus, Cylz] must collapse to z, that is, CQ[z] — z. Thus, we have
M = C[Cp[P,CylQIIl » CIC,H[P |, Qll. However, since C[C[P |, z]] is nor-
mal form, we cannot obtain a reduction C[C,[P |,Q]] » Q without erasing
the underlining of Q. This contradicts the fact that Q is an essential subterm
of M. Hence, Case 2.1 is impossible.

Case 22. M, c P (ie, Q C P).

Let M = C[P]. Then, from a similar reason as for Case 1, it follows that
C[z] must be a normal form. Since P | has a white root, M | = C[P |]. This
contradicts the color change of M; hence, Case 2.2 is impossible.

Case 3. M, and M,, occur independently (i.e., Mp & My, and M, & Mp).

Let M = C[M,, My, Mp = Cp[ P, and M, = C,[Q]. By a similar reason as
for Case 1, Clz, z'] must be a normal form. If Cp[z] and Cylz] both are
normal forms, then we have M | = C[Cp[P | ], C,[Q | ]I contradiction to the
color change of M. Thus, both C[z] and Cy[z] cannot be normal forms. Now
consider the following two subcases:

Case 3.1. Cplz] is a normal form, but Cy[z] is not (or Cplz] is a normal
form but Cp[z] is not).

Let Cplz]l = Chlz, ...,z If Cphlz,...,z] # z, then N =
C[C,l P, ColQ, ..., Oll] has two essential subterms P and Q by Proposition
2.9: contradiction. Thus, Cylz] — z, and we have M = C[C,[P, Cololll »
C[Cp[P |, Q] However, since C[Cp[P |, z] is a normal form, we cannot have
CIC,[P |, Q1] - Q. This contradicts the fact that Q is an essential subterm of
M. Hence, Case 3.1 is impossible.

Case 3.2. Neither Cp[z] nor Cylz] is a normal form.

By the same reason as for Case 3.1, we have Cplz] = z and Cylz] — z.
Thus, we can write M = C[C,[P),CylQll » N = C[P,C,[Qll - N' =
C[P, Q]. Note that since N has exactly one essential subterm, by Proposition
2.9 O must be this unique essential subterm of N. Since N’ has a black root
and N'|(=M |) has a white root, N’ must have at least one essential
subterm, say P’, by Lemma 3.7.2. However, we cannot take P nor Q as P’
since P and Q are not special subterms of N'. Which special subterm of N’
can we take as P’? If P’ and Q occur independently in N', we can write
N=C'[P,ChlQll » N' = C'[P’,Q] » P'. Hence, not only Q but also P’ is
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an essential subterm of N: contradiction to the uniqueness of essential
subterm of N. If P’ € Q, by a similar way we can easily show that P’ is an
essential subterm of N: again contradiction. If Q € P’, by Lemma 2.8 we have
some essential subterm P” in N such that P" — P’ and Q C P": contradic-
tion. Therefore, it follows that Case 3.2 is impossible. O

Appendix B

In this Appendix we prove termination of the direct sum of a left-linear
complete TRS and a non-collapsing terminating TRS. A TRS is noncollapsing
if it does not contain collapsing rewrite rules; a rewrite rule is a collapsing rule
if its right-hand side is a variable.

Throughout this Appendix, let Ry, and R, be terminating TRSs. Rusino-
witch [1987] proved:

THEOREM B.1. IfR, and R,, are noncollapsing, then the direct sum R, ® R,
is terminating.

In the present paper, we have shown:

THEOREM B.2. IfR, and R, are left-linear and confluent, then the direct sum
R, ® R, is terminating.

These two facts suggest that the properties “roncollapsing” and “left-linear
and confluent” are in some instances interchangeable. Thus, we are led to the
following conjecture.

CONJECTURE B.3.  If R, is noncollapsing and R, is left-linear and confluent,
then the direct sum R, ® R, is terminating.

We will show that this conjecture indeed holds. Henceforth, we assume that
R, is noncollapsing and terminating, and that R, is left-linear and complete
(i.e., confluent and terminating). Further, —, (i = b, w) denotes the reduction
relation given by the rewrite rules of R;. Note that a mixed term ¢ has a unique
normal form with respect to —, , denoted by nf, (1), because R, is complete.

LemMMA B4,  Lett -, s. Then we have nf,(t) - ,nf,(s). Moreover, ift =, s
is an outer reduction, then nf,(t) =, nf,(s).

PrOOF. Since ¢ —, s, there exists a rule 1 — r of R, with the set of
variables {x,,..., x,} occurring in 1, a context C[ ], and mixed terms ¢,,...,¢,,
such that ¢ = C[lo] -, s = Clro], where the substitution o is defined by

x;o=t,(i=1,...,n).

Let nf(C[ D=C'[,...,) By x;6' =nf(t;) i=1,...,n) we define a new
substitution o ’. From the noncollapsing property R, of and the left-linearity
of R,, it follows that nf,(t) = C'llo’,...,10'] and nf,(s) = C'[to’,...,10'].
Thus, nf,(t) », nf,(s) holds. If t+ -, s is an outer reduction, then nf,
(CL D =C'[ ] thatis, C' contains precisely one hole. Hence, nf,(t) =, nf,(s)
follows. O

THEOREM B.5. Let the TRSs R, and R,, be terminating. If R, is noncollaps-
ing and R, is left-linear and confluent, then the direct sum R, ® R, is terminat-
ing.
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PROOF. By induction on rank(¢) = k. The basic step k = 1 is trivial. Induc-
tion step: Assume the theorem for rank(z) < k. Then, we will show the case
rank(¢) = k. Suppose there exists an infinite reduction ¢ — ¢’ — " — -
From the induction hypothesis, all the terms ¢, ¢', t”, ... have the same rank.
In this infinite reduction we must have infinitely many outer reduction steps;
otherwise, we must have an infinite internal reduction, in contradiction with
the induction hypothesis. Now consider the following cases.

Case 1. root(t) € &,. The infinite reductiont —t' — t" — ... has the form
A T N R S A N Tl 7h TR
Then by Lemma B.4 we have
v nf(tg) >y nf, (1) = nf, (1)) >, nf,(8) = nf () >, ...

Since the infinite reduction y has infinitely many steps of outer reduction
- , by Lemma B.4 it follows that the reduction y must have infinitely many
—, steps: contradiction.

Case 2. root(t) € &,. By using outer reduction steps —, and inner reduc-
tion steps —; , the infinite reduction can be presented as

it =ty > 50 > b > S P, L >y

From the noncollapsing property of R, every inner reduction ¢, », s, in &
does not modify the outermost layer of ¢,, that is, we can write ¢, =
C,tf,...;tpNand s, = C, [s,...,s.] where 1 » s" (i=1,...,m).
Hence, by replacing all the internal terms in § with x, we obtain

n

8 Colx,....x]1 », Cilx,....,x] », C)lx,....,x]1», -

where every —», corresponds to —», in 8. Since & has infinitely many steps
of —, as —_, 8’ must be an infinite reduction: contradiction. O
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